www.Learnpython4cbse.com
 XII - Computer Science (083)
 Marking Scheme

Time Allowed: 3 hours
MM: 70

$\begin{aligned} & \frac{\text { Ques }}{\text { No }} \\ & \hline \underline{\text { No }} \end{aligned}$	Question and Answers	Distribution of Marks	Total Marks
SECTION A			
1	True	1 mark for correct answer	1
2	Option d delete	1 mark for correct answer	1
3	Option b 18	1 mark for correct answer	1
4	Option d ('BHASA', ‘‘, ‘SANGAM@75’)	1 mark for correct answer	1
5	$\begin{aligned} & \text { Option b } \\ & 15,50 \end{aligned}$	1 mark for correct answer	1
6	Option a PAN	1 mark for correct answer	1
7	Option a r g b	1 mark for correct answer	1
8	Option b 2@tr	1 mark for correct answer	1

9	Option b Statement 4	1 mark for correct answer	1
10	Option b Wait\#Stop\#	1 mark for correct answer	1
11	Option b SMTP	1 mark for correct answer	1
12	Option a 21 7	1 mark for correct answer	1
13	True	1 mark for correct answer	1
14	Option b It is case sensitive	1 mark for correct answer	1
15	Packet	1 mark for correct answer	1
16	Option c seek()	1 mark for correct answer	1
17	Option a Both A and R are true but R is the correct explanation for A	1 mark for correct answer	1

[2]

18	Option a Both A and R are true but R is the correct explanation for A	1 mark for correct answer	1
SECTION B			
19	(i) SMTP - Simple Mail Transfer Protocol IMAP - Internet Message Access Protocol (ii) Active hubs amplify the incoming electric signal, whereas passive hubs do not amplify the electric signal. (Any other valid difference may be considered) OR (i) A network protocol is an established set of rules that determine how data is transmitted between different devices in the same network. (ii) Hub is an electronic device that connects several nodes to form a network and redirect the received information to all the nodes in a broadcast mode. Whereas Switch is an intelligent device that connects several nodes to form a network and redirect the received information only to the intended node(s). (Any other valid difference may be considered)	½ mark for each correct expansion 1 mark for any one correct difference 1 mark for correct definition 1 mark for any one correct difference	1+1=2
20	```def table (): n=int (input ("Enter number which table U need: ")) for i in range (1,11): print ("able of Enter no=",i*\underline{n}) table ()```	$1 / 2$ mark for each correction made	2

\begin{tabular}{|c|c|c|c|}
\hline 21 \& ```
SUBJECT={1:"Hindi",2:"Physics",3:"Chemistry",4:"CS",5:"MATH"}
def countMy (SUBJECT):
for S in SUBJECT.values():
if len(S)>5:
print(S.upper())
countMy()

```
                    OR
    def lenLines (STRING):
        \(\mathrm{t}=()\)
        L=STRING.split()
        for line in L :
            length \(=\) len(line)
            \(\mathrm{t}=\mathrm{t}+\) (length,)
        return t & 1⁄2 mark for
correct
function
header
1⁄2 mark for
correct loop
1/2 mark for
correct if
statement
\(1 / 2\) mark for
displaying
the output

\(1 / 2\) mark for
correct
function
header
\(1 / 22\) mark for
using split()
\(1 / 2\) mark for
adding to
tuple
\(1 ⁄ 2\) mark for
return
statement & 2 \\
\hline & Note: Any other correct logic may be marked & & \\
\hline 22 & (22, 44, 66) & 1 \(1 / 2\) mark for each correct digit \(1 / 2\) mark for parenthesis & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 23 & \begin{tabular}{l}
(i) L1.insert(1,100) \\
(ii) S1.isdigit() \\
OR \\
pop() function removes the lastvalue and returns the same.
\[
\begin{aligned}
& \ggg L=[10,20,30,20] \\
& \ggg \text { L.pop () } \\
& 20
\end{aligned}
\] \\
The remove() method removes thefirst matching value from the list. \\
>>>L.remove (20) \\
[10, 30, 20]
\end{tabular} & \begin{tabular}{l}
1 mark for each correct statement \\
1 mark for correct difference and 1 mark for suitable example
\end{tabular} & \(1+1=2\) \\
\hline 24 & \begin{tabular}{l}
SQL Command to add primary key: \\
select * from student where fee IS NULL \\
OR \\
DDL : CREATE, ALTER DROP \\
DML: INSERT UPDATE DELETE
\end{tabular} & \begin{tabular}{l}
2 mark for correct Command \\
1 mark for each correct DDL \& DML Categorized commands
\end{tabular} & 2 \\
\hline 25 & -22 \# 756 \# -9 \# 230 \# & \(1 / 2\) mark for each correct number and \(1 / 2\) mark for each correct \# symbol & 2 \\
\hline \multicolumn{4}{|c|}{SECTION C} \\
\hline 26 & ['DelhiDelhi', 'JaipurJaipur', 'AgraAgra', 'SuratSurat', 'MumbaiMumbai', 'BhopalBhopal'] & \(1 / 2\) mark for each correct output & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 27 & \begin{tabular}{|l|l|lc|}
\hline (a) & (b) & (c) & \\
Item Name & Dateofstock & Type & Sum(Price) \\
\hline White lotus & 13/12/2001 & Double Bed & 80000 \\
Comfort Zone & \(22 / 02 / 2002\) & Baby Cot & 30500 \\
Wood Comfort & \(20 / 02 / 2003\) & Office Table & 43000 \\
& & Sofa & 57500 \\
& & Dining Table & 11500 \\
\hline
\end{tabular} & 1 mark for each correct output. & \(1 * 3=3\) \\
\hline 28 & ```
def SHOWWORD () :
    c=0
    file=open('STORY.TXT,'r')
    line = file.read()
    word = line.split()
    for w in word:
        if len(w)<5:
        print( w)
    file.close()
                    OR
def count H():
    f = open ("para.txt" , "r" )
    lines =0
    L=f. readlines ()
    for i in L:
        if i [0]== 'H':
            lines +=1
    print ("No. of lines are: " , lines)
``` & ( \(1 / 2\) Mark for
opening the file)
(\(1 / 2\) Mark for
reading line
and/or splitting \()\)
\((1 / 2\) Mark for
checking
condition)
\((1 / 2\) Mark for
printing word \()\) & 3 \\
\hline 29 & \begin{tabular}{l}
(i) \\
UPDATE EMP \\
SET Salary=Salary + Salary*0.10 \\
WHERE Allowance IS NOT NULL; \\
(ii) SELECT Name, Salary + Allowance AS \\
"Total Salary" FROM EMP; \\
(iii) \\
DELETE FROM EMP \\
WHERE Salary>40000;
\end{tabular} & 1 mark for each correct query & 1*3=3 \\
\hline
\end{tabular}

\section*{SECTION D}

\begin{tabular}{|c|c|c|c|}
\hline 32 & ```
import csv
def createcsv():
 f=open("result.csv","w", newline="")
 w=csv.writer(f)
 w.writerow([1,'Anil',40,34,90,""])
 w.writerow([2,'Sohan',78,34,90,""])
 w.writerow([3,'Kamal',40,45,9,""])
 f.close()
import csv
def copycsv():
 f=open("result.csv","r")
 f1=open("final.csv","w",newline="")
 w1=csv.writer(f1)
 r=csv.reader(f)
 for x in r:
 x[5]=int(x[2])+int(x[3])+int(x[4])
 w1.writerow(x)
f.close()
f1.close()
``` & \begin{tabular}{l}
1/2 mark for accepting data correctly \(1 / 2\) mark for opening and closing file \(1 / 2\) mark for writing headings \(1 / 2\) mark for writing row \\
\(1 / 2\) mark for opening and closing file \\
\(1 / 2\) mark for reader object \\
\(1 / 2\) mark for print heading \(1 / 2\) mark for printing data
\end{tabular} & 4 \\
\hline \multicolumn{4}{|c|}{SECTION E} \\
\hline 33 & \begin{tabular}{l}
(i) M/s Computer Solutions should install its server in finance block as it is having maximum number of computers. \\
(ii) Any suitable layout \\
(iii) Satellite Link. \\
(iv) Switch. \\
(v) LAN
\end{tabular} & 1 Mark of each correct answer & \(1 * 5=5\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 34 & \begin{tabular}{l}
(i) \\
rb+ Opens a file for both reading and writing in binary format. (+) the file pointer will be at the beginning of the file. \\
wb+ Opens a file for both reading and writing in binary format. Overwrites the existing file If the file exists. If the file does not exist, creates a new file for reading or writing. \\
(ii) def Readfile 0 :
```

s=open("Employee.dat", "rb+")
try:
while True:
r=pickle.load(s)
if r[2]>=20000 and r[2]<=30000:
print(r)
except:
print("end of file")

``` \\
OR \\
(i) \\
In pickle module, dump () method is used to convert (pickling) Python objects for writing data in a binary file \\
Whereas the load () function is used to read data from a binary file or file object. \\
(ii) \\
import pickle as p \\
\(\mathrm{L}=\) [] \\
with open('emp.dat','rb') as f: \\
\(\mathrm{L}=\mathrm{p} . \operatorname{load}(\mathrm{f})\) \\
for \(r\) in \(L\) : \\
if r[2]>5000: \\
print("name=", r[0]) \\
print("designation=", r[1]) \\
print("salary=",r[2]) \\
Note: Any other correct logic may be marked
\end{tabular} & \begin{tabular}{l}
1 mark for \\
each correct \\
difference \\
\(1 / 2\) mark for \\
correctly \\
opening and \\
closing files
\end{tabular}
112 mark for
correct loop
\(1 / 2\) mark for
correct split
1 mark for
correctly
reading /
writing data
\(1 / 2\) mark for
printing
data & \(2+3=5\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 35 & \begin{tabular}{l}
(i) A table can only have one primary key, but it can have multiple candidate key in a database. (any suitable example)
```

 (ii)
 import mysql.connector
 mydb=mysql.connector.connect(host="localhost",user="root",passwd="admin",dat
 abase="SCHOOL")
mycursor=mydb.cursor()
while 1:
ch=int(input("enter -1 to exit / any other no to insert record into student table"))
if ch==-1:
break
eno=int(input("Enter Employee no"))
ename=input("Enter Employee Name")
edept=input("Enter dept name")
sal=int(input("Enter salary"))
mycursor.execute("insert into EMP values ('"+str(eno)+"','"+ ename+"','" +edept +
"','"+str(sal)+"')")
mydb.commit()
for x in mycursor:
print(x)

``` \\
OR \\
(i) \\
Degree: The total number of attributes which in the relation is called the degree of the relation. \\
Cardinality: Total number of rows present in the Table. (any suitable example) \\
(ii) \\
import mysql.connector \\
mydb=mysql.connector.connect(host="localhost",user="root",passwd="admin",databas e="SCHOOL") \\
mycursor=mydb.cursor() \\
mycursor.execute("alter table emp add (bonus int(3))") \\
mycursor.execute("desc emp") \\
for x in mycursor: \\
print( \(x\) )
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) mark for \\
correct \\
definition \\
\(1 / 2\) mark for \\
correct \\
example \\
\(1 / 2\) mark for importing correct module \\
1 mark for correct connect() \\
\(1 / 2\) mark for correctly accepting the input \\
\(11 / 2\) mark for correctly displaying data
\end{tabular} & \(1+4=5\) \\
\hline
\end{tabular}```

